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Figure 4.11.1: Defining the dot
product in B3

10. A matrix of the form

abc
de f
ghi

such that ae — bd = 0 cannot be invertible.

Inner Product Spaces

We now extend the familiar idea of a dot product for geometric vectors to an arbitrary
vector space V. This enables us to associate a magnitude with each vector in V and also
to define the angle between two vectors in V. The major reason that we want to do this
is that, as we will see in the next section, it enables us to construct orthogonal bases in
a vector space, and the use of such a basis often simplifies the representation of vectors,
We begin with a brief review of the dot product.

Letx = (x1, x2, x3) andy = (y1, y2, y3) be two arbitrary vectors in R3, and consider
the corresponding geometric vectors

x = x1i + x2j + x3k, y = yii + y2j + y3k.
The dot product of x and y can be defined in terms of the components of these vectors as
Xy =x1y1+x2y2 +X3y3. (4.11.1)
An equivalent geometric definition of the dot product is
x-y = |[x]| llyllcos b, 4.11.2)

where ||x||, |ly|| denote the lengths of x and y respectively, and 0 < 6 < 7 is the angle
between them. (See Figure 4.11.1.)
Taking y = x in Equations (4.11.1) and (4.11.2) yields

x| = x - % = x7 + x5 +x3,

so that the length of a geometric vector is given in terms of the dot product by

[IX|| =X X = xl2 +x§ +x§,
Furthermore, from Equation (4.11.2), the angle between any two nonzero vectors X and
yis
X-y
([ 1yll”

which implies that x and y are orthogonal (perpendicular) if and only if

cosf = (4.11.3)

x-y=0.

In a general vector space, we do not have a geometrical picture to guide us in defining
the dot product, hence our definitions must be purely algebraic. We begin by considering
the vector space R", since there is a natural way to extend Equation (4.11.1) in this
case. Before proceeding, we note that from now on we will use the standard terms inner
product and norm in place of dot product and length, respectively.
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Inner Product Spaces

We now extend the familiar idea of a dot product for geometric vectors to an arbitrary
vector space V. This enables us to associate a magnitude with each vector in V and also
to define the angle between two vectors in V. The major reason that we want to do this
is that, as we will see in the next section, it enables us to construct orthogonal bases in
a vector space, and the use of such a basis often simplifies the representation of vectors,
We begin with a brief review of the dot product.

Letx = (x1, x2, x3) andy = (y1, y2, y3) be two arbitrary vectors inR3, and consider

the corresponding geometric vectors
X = x1i + x2j + x3K, y = yii+ y2j + y3k.
The dot product of x and y can be defined in terms of the components of these vectors as
Xy =x1y1 +x2y2 T X3¥3. 4.11.1)
An equivalent geometric definition of the dot product is
x-y = |Ix]| [lyllcos b, (4.11.2)

where ||x||, ||y|| denote the lengths of x and y respectively, and 0 < 6 < & is the angle
between them. (See Figure 4.11.1.)
Taking y = x in Equations (4.11.1) and (4.11.2) yields

||x||2=x-x=x12+x%+x§,

so that the length of a geometric vector is given in terms of the dot product by

[|x|]| = VX - X = \/xf +x% +x§.
Furthermore, from Equation (4.11.2), the angle between any two nonzero vectors X and
yis

iy il 4.11.3)
[1xI] 1yl

which implies that x and y are orthogonal (perpendicular) if and only if
x-y=0.

In a general vector space, we do not have a geometrical picture to guide us in defining
the dot product, hence our definitions must be purely algebraic. We begin by considering
the vector space R”, since there is a natural way to extend Equation (4.11.1) in this
case. Before proceeding, we note that from now on we will use the standard terms inner
product and norm in place of dot product and length, respectively.
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DEFINITION 4.11.1

Letx = (x),x2,...,x,) andy = (y1, y2, - .., ¥n) be vectors in R”. We define the
standard inner product in R”, denoted (x, y), by

(X,¥) = x1y1 +x2y2 + - + XnYn.

The norm of x is

[x]| = vV {x,x) = x12+x22+...+x’%.

[Example 4.11.2| Ifx=(1,-1,0,2,4)andy = (2, 1,1,3,0) inR’, then

xy) =MQ)+ (=DM + O)D) + 2)B) + H(0) =7,
x|l = V12 + (—1)2 + 02 + 22 + 42 = /22,
Iyl = V22 + 12 + 12 + 32 + 02 = /15, B

Basic Properties of the Standard Inner Product in R”

In the case of R”, the definition of the standard inner product was a natural extension of
the familiar dot product in R3. To generalize this definition further to an arbitrary vector
space, we isolate the most important properties of the standard inner product in R” and
use them as the defining criteria for a general notion of an inner product. Let us examine
the inner product in R” more closely. We view it as a mapping that associates with any
two vectors X = (xy, X2, ..., Xx,) andy = (y1, y2, ..., ¥u) in R” the real number

X, y) =x1y1 +x2y2 + -+ + X Vu.

This mapping has the following properties:

For all x, y, and z in R” and all real numbers k,

. {x,x) > 0. Furthermore, (x, x) = 0 if and only if x = 0.
- (¥, x) = (x,y).

. (kx,y) = kix,y).

- x4y, z) =(x,2) + (y, 2).

W N e

These properties are easily established using Definition 4.11.1. For example, to prove
property 1, we proceed as follows. From Definition 4.11.1,

{x, x) :x12+x%+---+x,21.
Since this is a sum of squares of real numbers, it is necessarily nonnegative. Further,
(x,x) = Oifand only if x; = xp = --- = x, = O—that is, if and only if x = 0.

Similarly, for property 2, we have

(¥,X) =yix1 +y2x02+ -+ yuxn = x1¥1 + X2y2 + -+ Xu Y0 = (X, ¥).

We leave the verification of properties 3 and 4 for the reader.
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Figure 4.11.2: (f, f) gives the
area between the graph of

y= [f(x)]2 and the x-axis, lying
over the interval [a, b].

- X

Vector Spaces

 Definition of a Real Inner Product Space

We now use properties 1—4 as the basic defining properties of an inner product in a real
vector space.

DEFINITION 4.11.3
Let V be a real vector space. A mapping that associates with each pair of vectors u
and v in V a real number, denoted (u, v), is called an inner product in V, provided
it satisfies the following properties. For all u, v, and w in V, and all real numbers k,
1. (u, u) > 0. Furthermore, {u, u) = 0 if and only if u = 0.
2. {v,u) = (u,v).
3. (ku, V) = k(u, v).
4

. (utv,w) = (u,w) + (v, w).

The norm of u is defined in terms of an inner product by

[la]] = v/ (u, u).

A real vector space together with an inner product defined in it is called a real inner
product space.

Remarks

1. Observe that |[u|] = +/{u, u) takes a well-defined nonnegative real value, since
property 1 of an inner product guarantees that the norm evaluates the square root
of a nonnegative real number.

2. Ttfollows from the discussion above that R” together with the inner product defined
in Definition 4.11.1 is an example of a real inner product space.

One of the fundamental inner products arises in the vector space C%a, b] of all
real-valued functions that are continuous on the interval [a, b]. In this vector space, we
define the mapping { f, g) by

b
(f. 8 =/ f(x)g(x) dx, (4.11.4)

for all f and g in C°[a, b]. We establish that this mapping defines an inner product in
COa, b] by verifying properties 1-4 of Definition 4.11.3. If f isin C%a, b], then

b
. f) = f LF P dx.

Since the integrand, [ f (x)]?, is a nonnegative continuous function, it follows that (f, f)
measures the area between the graph y = [ f (x)]? and the x-axis on the interval [a, b].
(See Figure 4.11.2.)

Consequently, {f, f) > 0. Furthermore, (f, f) = 0 if and only if there is zero area
between the graph y = [ f (x)]? and the x-axis—that is, if and only if

for all x in [a, b].

[F)? =0

A4

y
f(x) = 0for all x in [a,b]

} — x
a b

Figure 4.11.3: (f, f) =0if
and only if f is the zero function.

Example 4.11.4

Theorem 4.11.5
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Hence, (f, f) = 0if and only if f(x) = 0, for all x in [a, b], so f must be the zero
function. (See Figure 4.11.3.) Consequently, property 1 of Definition 4.11.3 is satisfied.
Now let f, g, and 4 be in C 0[a, b], and let k be an arbitrary real number. Then

b b
o= f OO = f Fgt) dx = (f, ).

Hence, property 2 of Definition 4.11.3 is satisfied.
For property 3, we have

b b b
(kf, g) = f *kF)()g(x) dx = / kf(0)g(x) dx = k f F)g() dx = k{f, ),

as needed. Finally,

b b
(f+g.h) =/ (f +8)x)hix)dx =/ [f(x) +g(x)]h(x) dx
b g =
=/ SO)h(x)dx +/ g)h(x)dx = {f, h)+ (g, h),

a

so that property (4) of Definition 4.11.3 is satisfied. We can now conclude that Equa- '
tion (4.11.4) does define an inner product in the vector space C%a, b]. ;

Use Equation (4.11.4) to determine the inner product of the following functions in
cor0, 11:

f(x) = 8x, gx) =x2—1.
Also find || f]| and ||g]|.

Solution: From Equation (4.11.4),

1
=24
0

1
(f,8) = f 8x(x? — 1) dx = [2x4 ~4)52]
0

Moreover, we have

1
8
= 64x2 dx = —
11 1/fo sar=J
1 1 )
lgll = f(x2—1)2dx= /(x4—2x2+1)dx= e 0
0 0 15

We have already seen that the norm concept generalizes the length of a geometric
vector. Our next goal is to show how an inner product enables us to define the angle
between two vectors in an abstract vector space. The key result is the Cauchy-Schwarz
inequality established in the next theorem.

and

(Cauchy-Schwarz Inequality)

Let u and v be arbitrary vectors in a real inner product space V. Then

[{u, v)| < [[u]] |Iv]]. 4.11.5)
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Proof Let k be an arbitrary real number. For the vector u -+ kv, we have
0 < |ju+kv||®> = (u+kv,u+kv). (4.11.6)
But, using the properties of a real inner product,

u,u+kv) + kv,u+kv)
u+ kv, u) + (u+ kv, kv)
u, u) + (kv,u) + (u, kv) + (kv, kv)

(u+kv,u+kv) = {(
(
(
= (u,u) + 2(kv,u) + k(v, kv)
(
=
= |

1

I

1l

)
u, u) + 2(kv,u) + k{kv, v)
u, u) + 2(kv, u) + k2(v, v)
u)i? 4 2k (v, ) + K2 v},

Consequently, (4.11.6) implies that
|IVI1%k2 4 2(u, v)k + [Ju]]* > 0. @.11.7)
The left-hand side of this inequality defines the quadratic expression
Pk = [IVII%K* +2(u, v)k + |[u][*.
The discriminant of this quadratic is
A =4((u, v))* = 4/l P|IvI.

If A > 0, then P (k) has two real and distinct roots. This would imply that the graph of P
crosses the k-axis and, therefore, P would assume negative values, contrary to (4.11.7).
Consequently, we must have A < 0. That is,

4((u, v)) — 4|l ivI* <0,

or equivalently, .
((u, v))? < {lul?|vI1*.

Hence,

[u, )| < [luf] |}vil. B

If u and v are arbitrary vectors in a real inner product space V, then (u, v) is a real
number, and so (4.11.5) can be written in the equivalent form

—llall [Ivi] < {u, v) < [la]| [|v]].
Consequently, provided that u and v are nonzero vectors, we have

(u,v)
LRI .

Thus, each pair of nonzero vectors in a real inner product space V determines a unique
angle 6 by
(u, v)

cosfd = ——, 0<8<m. 4.11.8)
Huall {Ivll

!' Example 4.11.6

[Example 4.11.7 |
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We call 6 the angle between u and v. In the case when u and v are geometric vectors,
the formula (4.11.8) coincides with Equation (4.11.3).

Determine the angle between the vectors u = (1, —1,2,3) and v = (-2, 1,2, —=2) in
R*.

Solution: Using the standard inner product in R* yields

(wv)=-5 |uil=v15,  |vll=+13,
so that the angle between u and v is given by
cosf = — i =—m O0<é<m
V15V/13 39 7 -
Hence,
6 = arccos (— T) ~ 1.937 radians ~ 110° 58/, O

Use the inner product (4.11.4) to determine the angle between the functions fi(x) =
sin2x and f»(x) = cos 2x on the interval [—m, 7 ].

Solution:  Using the inner product (4.11.4), we have

b

14 1 1
(f1, f2) =/ sin2x cos2x dx = E/ sindx dx = g(_(;034)() |’iﬂ =0.

- —

Consequently, the angle between the two functions satisfies
cos® =0, 0<0=<m,

which implies that & = 7 /2. We say that the functions are orthogonal on the interval
[—m, ], relative to the inner product (4.11.4). In the next section we will have much
more to say about orthogonality of vectors. O

Complex Inner Products’

The preceding discussion has been concerned with real vector spaces. In order to gener-
alize the definition of an inner product to a complex vector space, we first consider the
case of C". By analogy with Definition 4.11.1, one might think that the natural inner
productin C" would be obtained by summing the products of corresponding components
of vectors in C" in exactly the same manner as in the standard inner product for R”.
However, one reason for introducing an inner product is to obtain a concept of “length”
of a vector. In order for a quantity to be considered a reasonable measure of length, we
would want it to be a nonnegative real number that vanishes if and only if the vector
itself is the zero vector (property 1 of a real inner product). But, if we apply the inner
product in R* given in Definition 4.11.1 to vectors in C", then, since the components
of vectors in C" are complex numbers, it follows that the resulting norm of a vector in

9In the remainder of the text, the only complex inner product that we will require is the standard inner
product in C”, and this is needed only in Section 5.10.
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C" would be a complex number also. Furthermore, applying the R? inner product to, for
example, the vector u = (1 —1i,1+1i), we obtain

= (1 - D>+ A+ =0,

which means that a nonzero vector would have zero “length.” To rectify this situation,
we must define an inner product in C* more carefully. We take advantage of complex

conjugation to do this, as the definition shows.

DEFINITION 4.11.8

Ifu = (uy,u2,...,u4y) and v = (vi, v2, ..
standard inner product in C" by'0

., vy) are vectors in C", we define the

(w,v) = u1 vy +u2v2 + - + Un¥n.

The norm of u is defined to be the real number

lull = Qway = w4 ol + -+ 2.

The preceding inner product is a mapping that associates with the two vectors
u= Uz, ..., upyandv=_v1,02,..., vy) in C" the scalar
(W, v) = u1V) +u202 + -+ + unn.

In general, (u, v) will be nonreal (i.e., it will have a nonzero imaginary part). The key
point to notice is that the norm of u is always a real number, even though the separate
components of u are complex numbers.

Ifu=(1+2i2-3i)andv=(2—1i3+4i), find (u, v) and ||u]|.
Solution: Using Definition 4.11.8,

(,v) = (1 +2) Q2+ i) + (2 = 3)(3 — 4i) =5i —6— 17i = =6 —12i,
] = Vww = V(1 + 200 —2i) + @ -3)2+3) =5+ 13= V2. O

The standard inner product in C" satisfies properties (1), (3), and (4), put not property
(2). We now derive the appropriate generalization of property (2) when using the standafd
inner product in C*. Letuw = (u1,u2, ..., uy) and v = (v, v2, ..., Uy) be vectors in
C”". Then, from Definition 4.11.8,

(v,u) = viT) + V2ly + - A Vpllpy = UIV) FU2V2 0t UV = {(u, v).

Thus,

(v,u) = (u,v).

We now use the properties satisfied by the standard inner product in C" to define an inner
product in an arbitrary (that is, real or complex) vector space.

_ i N 2 2
"Recall that if z = a + ib, then Z = a — ib and |Z|2 =7z = (a+ib)a—ib)=a"+b".

_Example 4.11.11]

‘Exercises for 4ﬁ|
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DEFINITION 4.11.10

Let V be a (real or complex) vector space. A mapping that associates with each pair
of vectors u, vin V ascalar, denoted (u, v), is called an inner productin V, provided

it satisfies the following properties. For all u, v and w in V and all (real or complex)
scalars k,

{u, u) > 0. Furthermore, (u, u) = 0 if and only if u = 0.
(v,u) = (u, v).
. {ku,v) = k(u, v).

(v, w) = (u, w) + (v, w).

T S

The norm of u is defined in terms of the inner product by

[luff = +/{u, u).

Remark  Notice that the properties in the preceding definition reduce to those in
Definition 4.11.3 in the case that V is a real vector space, since in such a case the

complex conjugates are unnecessary. Thus, this definition is a consistent extension of
Definition 4.11.3.

Use properties 2 and 3 of Definition 4.11.10 to prove that in an inner product space

(u, kv) = k(u, v)
for all vectors u, v and all scalars k.

Solution: From properties 2 and 3, we have

(u,kv) = (kv,u) = k(v,u) =k (v, u) =k (u, v).
Notice that in the particular case of a real vector space, the foregoing result reduces to
(u, kv) = k(u, v),

since in such a case the scalars are real numbers. O

Key Terms

Inner product, Axioms of an inner product, Real (com-
plex) inner product space, Norm, Angle, Cauchy-Schwarz

inequality.

Skills

e Be able to compute the inner product of two vectors
in an inner product space.

e Be able to find the norm of a vector in an inner product
space.

e Be able to find the angle between two vectors in an
inner product space.

e Know the four inner product space axioms.

True-False Review

o Be able to check whether or not a proposed inner prod- F . 17 decide if the i is ¢
ucton a vector space V satisfies the inner product space or Questions 1-7, decide if the given statement is true or

axioms.

false, and give a brief justification for your answer. If true,
you can quote a relevant definition or theorem from the text.
If false, provide an example, illustration, or brief explanation
of why the statement is false.

4————_‘
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Problems
1.

. In any inner product space V, (x +¥,X —¥) < 0if

LI plx) = a0+a1x+a2x2 andg(x) = bo+b1x+b2x2,

. Ifv = (2+i,3-2i,4+i)andw = (—=1+i, 1-3i,3—

. Referring to A and B in the previous problem, show

CHAPTER 4 Vector Spaces

. If v and w are linearly independent vectors in an inner ~ For Problems 6-7, use the inner product given in Problem 4

to determine {A, B), || Alll, and ||| BI||.

2 —1 31
6.A=|:3 5:|,B=[_12]

product space V, then {v,w)=0.
In any inner product space V, we have

(kv, kw) = k(v, w).

. If (vi, W) = (v2, w) = O in an inner product space V, 32 B 11
’ 7. A= ,B = :
then -2 4 =21

(civi + c2v2, W) = 0.
8. Let p1(x) = a + bx and po(x) = ¢+ dx be vectors
in Pj. Determine a mapping (p1, p2) that defines an

and only if ||x|| < [I¥] inner product on Py.

. In any vector space V, there is at most one valid inner

9, Verify that for all v = (v, v2) and w = (w1, wa) in

product { , ) that can be defined on V. R?

. The angle between the vectors v and w in an inner

product space V is the same as the angle between the (v, w) = 2vjwy + viwz + vawy + 2vwn

vectors —2v and —2w. . 5
defines an inner product on R“.

then we can define an inner producton P; via (p, q) =

aobo- For Problems 10-12, determine the inner product of the given

vectors using (a) the inner product given in Problem 9, ()
the standard inner product in R2.

Use the standard inner product in R* to determine
the angle between the vectors v = (1, 3, —1,4) and
w=(—1,1,-2,1).

10. v=(1,0),w = (-1, 2).

1. v=@2, -1, w=(3,6).

. If f(x) =sinx and g(x) = x on [0, 7], use the func-

tion inner product defined in the text to determine the

12. v=(1,-2),w=(2, 1).
angle between f and g.

13. Consider the vector space R?. Define the mapping ( , )

i), use the standard inner product in C3 to determine, by o) = vy1 — vy
(V, W),”VH,al’ld”W” s = 1w s |
Let for all vectors v = (v1, v2) and w = (w1, wy). Verify

that all of the properties in Definition 4.11.3 except (1)
A= | 411812 B = by b12] are satisfied by (, ).
" laz an |’ bt by :
. . The mapping in Problem 13 is called a pseudo-inner prod-
be vectors in M3(R). Show that the mapping uct in R? and, when generalized to R4, is of fundamental

(A, B) = ay1by1 + aizbiz2 + az1ba1 + anbn importance in Einstein’s special relativity theory.

14. Using Equation in Problem 13, determine all nonzero
vectors satisfying (v, v) = 0. Such vectors are called
null vectors.

defines an inner product in M2 (RR).

that the mapping

15. Using Equation in Problem 13, determine all vectors
satisfying (v, v) < 0. Such vectors are called timelike
vectors.

(A, B) = ay by + a1zbai + aa1b12 + anby

does not define a valid inner product on M3 (R).

16.

17.

18.

19.

20.
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Using Equation (4.11.11), determine all vectors sat-
isfying (v, v) > 0. Such vectors are called spacelike
vectors.

[Hint: ||v+w|> = (v+w, v+ w).]

(b) Two vectors v and w in an inner product space
V are called orthogonal if (v, w) = 0. Use (a)
to prove the general Pythagorean theorem: If v

and w are orthogonal in an inner product space
V, then

Make a sketch of R? and indicate the position of the
null, timelike, and spacelike vectors.

Consider the vector space R”", and let v =
(v1,v2,...,v,) and w = (wy, wy, ..., w,) be vec- 2 _ 2 2
tors in R”. Show that the mapping (, ) defined by IV + Wi = IIVIF =+ fiwl™

(v, W) = kiviwr + kavowz + - -+ + knvpwp (¢) Prove that for all v, win V,

is a valid inner product on R” if and only if the con-

) 1Iv+wl)2 = |lv — w||? = 4(v, w).
stants kq, k2, .. ., k, are all positive.

(i) [1v+wli? + v — wi> = 2(|vI[> + |[w]]?).
Prove from the inner product axioms that, in any inner
product space V, (v, 0) = 0 forall vin V. 21. Let V be a complex inner product space. Prove that

forallv,win V,
Let V be a real inner product space.

(a) Prove thatforallv,we V, v+ wii? = [Iv]]* + 2Re((v, w)) + [[v][%,

|lv + w||2 = ||v||2 + 2(v, w) + ||w||2. where Re denotes the real part of a complex number.

4.12 Orthogonal Sets of Vectors and the Gram-Schmidt Process

The discussion in the previous section has shown how an inner product can be used
to define the angle between two nonzero vectors. In particular, if the inner product of
two nonzero vectors is zero, then the angle between those two vectors is 7 /2 radians,
and therefore it is natural to call such vectors orthogonal (perpendicular). The following
definition extends the idea of orthogonality into an arbitrary inner product space.

DEFINITION 4.12.1

Let V be an inner product space.

1. Two vectors u and v in V are said to be orthogonal if (u, v) = 0.

2. A set of nonzero vectors {v1, V2, ..., V¢} in V is called an orthogonal set
of vectors if

(vi,vj) =0, whenever i # j.
(That is, every vector is orthogonal to every other vector in the set.)
3. A vector vin V is called a unit vector if ||v]| = 1.

4. An orthogonal set of unit vectors is called an orthonormal set of vectors.
Thus, {v1, v2, ..., vt} in V is an orthonormal set if and only if

(@) (v;,vj) =0 wheneveri # j.
(b) (vi,v;) =1foralli =1,2,...,k.
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Remarks

1. The conditions in (4a) and (4b) can be written compactly in terms of the Kronecker
delta symbol as
(V,‘,Vj):(sij, i,j=1,2,...,k.
2. Note that the inner products occurring in Definition 4.12.1 will depend upon which
inner product space we are working in.

3. If v is any nonzero vector, then m v is a unit vector, since the properties of an
v

inner product imply that

1
<1 : > L e} VI = 1.

—V,— V)= —— = —
[vil vl [Ivl]? I1v]|?
Using Remark 3 above, we can take an orthogonal set of vectors {vi, va, ..., V¢}
and create a new set {u, Uy, ..., Uy}, where u; = mvi is a unit vector for each i.
i
Using the properties of an inner product, it is easy to see that the new set {uy, uz, ..., ug}

is an orthonormal set (see Problem 31). The process of replacing the v; by the u; is called
normalization.

Verify that {(—2, 1, 3, 0), (0, =3, 1, —6), (-2, —4, 0, 2)] is an orthogonal set of vectors
in R%, and use it to construct an orthonormal set of vectors in 4,

Solution: Let v, = (=2,1,3,0), v2 = (0, =3, 1, —6), and v3 = (-2, —4,0, 2).

Then

(vi, va) = 0, (vi,va) =0, (va,v3) =0,

so that the given set of vectors is an orthogonal set. Dividing each vector in the set by
its norm yields the following orthonormal set:

| | |
—Ws —=VY3%: —=N3 I 0
[JM 146 246 |

Verify that the functions f1(x) = 1, f>(x) = sinx, and f3(x) = cosx are orthogonal in

CO[—7, ], and use them to construct an orthonormal set of functions in CY-mx, 7.
Solution: In this case, we have

(fl,fz)zfn sinx dx =0, (fl,f3)=/ cosxdx =0,

- .
T 1 w T

(f2, f3) =/ sinx cosx dx = |:— sin” x =0,
- 2 .

so that the functions are indeed orthogonal on [—, 7 ]. Taking the norm of each function,
we obtain

||fl||=\//7r 1dx = V27,

-7

Nl = \//” sin? x dx = ‘//_ﬂ %(1 —cos2x)dx = /7,

— : ————
||f3||=// cos2xdx=‘/f E(l—*—cost)dx:\/f.
= -

Theorem 4.12.5

i"Examplmz.b '
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Thus an orthonormal set of functions on [—, 7] is

1 1 1
——, ——S8inXx, — COS X {. 1]
{«/ﬂ N NG J

Orthogonal and Orthonormal Bases

In the analysis of geometric vectors in elementary calculus courses, it is usual to use
the standard basis {i, j, k}. Notice that this set of vectors is in fact an orthonormal set.
The introduction of an inner product in a vector space opens up the possibility of using
similar bases in a general finite-dimensional vector space. The next definition introduces
the appropriate terminology.

DEFINITION 4.12.4

A basis {v, v2, ..., vy} for a (finite-dimensional) inner product space is called an
orthogonal basis if

(vi,v;) =0 whenever i # j,
and it is called an orthonormal basis if

(vi, vj) =&, i,j=1,2,..., n.

There are two natural questions at this point: (1) How can we obtain an orthogonal
or orthonormal basis for an inner product space V ? (2) Why is it beneficial to work with
an orthogonal or orthonormal basis of vectors? We address the second question first.

In light of our work in previous sections of this chapter, the importance of our next
theorem should be self-evident.

If {v1, v2, ..., Vi} is an orthogonal set of nonzero vectors in an inner product space V,
then {v(, v, ..., v4} is linearly independent.

Proof Assume that
CIVI+ Vo4 -+ v = 0. 4.12.1)

We will show thatc; = ¢y = -+ = ¢ = 0. Taking the inner product of each side of
(4.12.1) with v;, we find that

{civiteava+ -+ apve, vi) = (0,v;) =0.
Using the inner product properties on the left side, we have
(v, Vi) +ea(va, vi) + - cr Vi, Vi) = 0.
Finally, using the fact that for all j # i, we have (v i Vi) = 0, we conclude that
ci(vi,vi) =0.

Since v; # 0, it follows that ¢; = 0, and this holds for each i with 1 <i < k. [ ]

Let V = M>(R), let W be the subspace of all 2 x 2 symmetric matrices, and let

=[] 2)
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Theorem 4.12.7

. Example 4.12.8|

Vector Spaces

Define an inner product on V viall

buu b
a2 | O OI2 0N g by 4 aggbin + agibar + azbs.
a1 an b1 b2

Show that § is an orthogonal basis for W.

Solution:  According to Example 4.6.18, we already know that dim[W] = 3. Using
the given inner product, it can be directly shown that S is an orthogonal set, and hence,
Theorem 4.12.5 implies that S is linearly independent. Therefore, by Theorem 4.6.10, S
is a basis for W. a

Let V be a (finite-dimensional) inner product space, and suppose that we have an
orthogonal basis {vi, v, ..., Vv,} for V. As we saw in Section 4.7, any vector v in V
can be written uniquely in the form

Vv=civVi +cavy + -+ cpVp, 4.12.2)

where the unique n-tuple (c1, ¢, . .., ¢,) consists of the components of v relative to the
given basis. It is easier to determine the components ¢; in the case of an orthogonal basis
than it is for other bases, because we can simply form the inner product of both sides of
(4.12.2) with v; as follows:

(v, vi) = {c1v1+cava + -+ + CuVp, Vi)
= c1{v1, Vi) + ca{v2, Vi) + -+ + cp{Vu, Vi)
= ¢|{vill?,

where the last step follows from the orthogonality properties of the basis {v1, v2, ..., V4 }.
Therefore, we have proved the following theorem.

Let V be a (finite-dimensional) inner product space with orthogonal basis {v{, v2, ..., v, }.

Then any vector v € V may be expressed in terms of the basis as
{v, V1)> ((v, Vz)> ((v, Vn))
V= vi+ V2t Ve
(Hv1|l2 IIvall? lvall2 )
Theorem 4.12.7 gives a simple formula for writing an arbitrary vector in an inner

product space V as a linear combination of vectors in an orthogonal basis for V. Let us
illustrate with an example.

Let V, W, and S be as in Example 4.12.6. Find the components of the vector
e 0-1
-1 2

Solution:  From the formula given in Theorem 4.12.7, we have

v_g 2 —1 +g 11} 10f2 2
T 6|l —-1 0 7112 2112 =3 |"

1This defines a valid inner product on V by Problem 4 in Section 4.11.

relative to S.

Corollary 4.12.9

| Example 4.12.10

Examp_ale_4.1 2.11)
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so the components of v relative to S are
12 10
3’7 21)° =

If the orthogonal basis {vi, v, ...,v,} for V is in fact orthonormal, then since
[Ivil| = 1 for each {, we immediately deduce the following corollary of Theorem 4.12.7.

Let V be a (finite-dimensional) inner product space with an orthonormal basis
{vi,¥2,..., v,). Then any vector v € V may be expressed in terms of the basis as

V=V, v)Vi + (v, va)va + - .- + (V, V) V,..

Remark  Corollary 4.12.9 tells us that the components of a given vector v relative to
the orthonormal basis {vy, v, ..., v,} are precisely the numbers (v,v;),for1 <i <n.
Thus, by working with an orthonormal basis for a vector space, we have a simple method
for getting the components of any vector in the vector space.

We can write an arbitrary vector in R*, v = (a;, ay, ..., ay), in terms of the standard
basis {ej, e, ..., e,} by noting that (v, ¢;) = a;. Thus, v = aje; + azey +--- + ape,.
O

We can equip the vector space P; of all polynomials of degree < 1 with inner product

|
(p,q) = [ : p(x)q(x)dx,

thus making Py into an inner product space. Verify that the vectors po = 1/4/2 and
P1 = +/1.5x form an orthonormal basis for P; and use Corollary 4.12.9 to write the
vector ¢ = 1 + x as a linear combination of py and p.

Solution: We have

1
1
{(po, p1) =/ —2-v1.5xdx =0,

12
1 1
||po||=\/<po,po>=1//1pgdx=‘/f %dx:ﬁ:l,
= -1

1 1 T
||p1||=\/<p1.p1>=J/ p%dx=‘// §x2dx=\/1 =i
-1 1

12 2"

Thus, {po, p1} is an orthonormal (and hence linearly independent) set of vectors in Pr.
Since dim[P|] = 2, Theorem 4.6.10 shows that {pg, p1} is an (orthonormal) basis for
P.

Finally, we wish to write g = 1 + x as a linear combination of py and p, by using

Corollary 4.12.9. We leave it to the reader to verify that (g, py) = ~/2and (g, p1) = %
Thus, we have
2 1 2 3
i e [1(J50).
Po 3 P1 NG + 3 2x
So the component vector of 1 + x relative to {pg, p1} is (v/2, \/g)T. O
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V2 w — P(w,v)

X

Figure 4.12.1: Obtaining an
orthogonal basis for a
two-dimensional subspace of R3.

Vector Spaces

The Gram-Schmidt Process

Next, we return to address the first question we raised earlier: How can we obtain an
orthogonal or orthonormal basis for an inner product space V7 The idea‘l behind the
process is to begin with any basis for V, say {1, X2, . . . , X, }, and to successively replace
these vectors with vectors vy, vo, .. ., v, that are orthogonal to one another, and to ensure
that, throughout the process, the span of the vectors remains unchanged. This is known
as the Gram-Schmidt process. To describe it, we shall once more appeal to a look at
geometric vectors.

If v and w are any two linearly independent (noncollinear) geometric vectors, then
the orthogonal projection of w on v is the vector P(w, v) shown in Figure 4.12.1. We
see from the figure that an orthogonal basis for the subspace (plane) of 3-space spanned
by v and w is {vy, v2}, where

vi=v and vy =w—P(w,v).

In order to generalize this result to an arbitrary inner product space, we need to
dertve an expression for P(w, v) in terms of the dot product. We see from Figure 4.12.1
that the norm of P(w, v) is

[[P(w, v)|| = ||w]| cos 8,

where 8 is the angle between v and w. Thus

v
P(w,v) = ||w]||cos 80—,
(w,v) = [|w]| V]
which we can write as
P(w, v) = <%‘|‘||TV” cosG) v. (4.12.3)
v

Recalling that the dot product of the vectors w and v is defined by
w-v =[|w|[[lv]|cos®,
it follows from Equation (4.12.3) that

(w-v)

PO =5

Ll

or equivalently, using the notation for the inner product introduced in the previous section,

Now let x| and x; be linearly independent vectors in an arbitrary inner product
space V. We show next that the foregoing formula can also be applied in V to obtain an
orthogonal basis {vy, vo} for the subspace of V spanned by {x1, x»}. Let

Vi =X

and

(x2, v1)
l[vi][?

vy=x9—P(x2,v)) =x2 V1. 4.12.4)

Lemma 4.12.12

Theorem 4.12.13
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Note from (4.12.4) that v, can be written as a linear combination of {xi, x,}, and
hence, v» € span{x, xp}. Since we also have that Xy € span{vy, v»}, it follows that
span{v|, v} = span{xy, X»}. Next we claim that v2 is orthogonal to v|. We have

(X2, v X3,V
(v2, V1) = (xp — 2 ;>V1,V1) (XZ,VI)—<(2*12>V1,VI)
I 1|<| ) [v1ll
X2,V
=(X2,V1)—2—12(V1,V1)=0,
[vill

which verifies our claim. We have shown that {vi, v2} is an orthogonal set of vectors
which spans the same subspace of V as x; and x.

The calculations just presented can be generalized to prove the following useful
result (see Problem 32).

Let{vi,vo,..., v} bean orthogonal set of vectors in an inner product space V.Ifx € V,
then the vector

X—Px,v) —PXx,vp)—--- — P(x, vy)

is orthogonal to v; for each .

Now suppose we are given a linearly independent set of vectors (X, X3, ..., X} in
aninner product space V. Using Lemma4.12.12, we can construct an ort hogonal basis for
the subspace of V spanned by these vectors. We begin with the vector v; = x| as above,
and we define v; by subtracting off appropriate projections of x; on vy, va, ..., vj_j.
The resulting procedure is called the Gram-Sehmidt orthogonalization procedure.
The formal statement of the result is as follows.

(Gram-Schmidt Process)

Let{x1,x2, ..., X,y } be alinearly independent set of vectors in an inner product space V.
Then an orthogonal basis for the subspace of V spanned by these vectors is {v;, v, ..
Vi }, where

L)

Vi =X

V2 =Xy — (XZ,—VI)VI
[Iv1l[?

% =n (X3,V1)v] B (Xs,Vz)v2
[lvil? [[v2l]?

e ._I {K,‘.Vﬁ_}
V=X ) e

|
k=1
m—1

(Xm, Vi)
Ym = Xm — Z —— V.

2
vl
Proof Lemma4.12.12 shows that {vi,v2,...,v,}isan orthogonal set of vectors. Thus,
both {vy, va, ..., vy} and {x], x5, ..., X} are linearly independent sets, and hence
span{vy, va, ..., v,} and span{xi, X2, ..., X,,}
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Example 4.12.14

|Example 4.12.15 |
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are m-dimensional subspaces of V. (Why?) Moreover, from the formulas given in The-
orem 4.12.13, we see that each x; € span{vy, V2, ..., Vyn}, and so span{X1, X2, . .., Xm}
is a subset of span{vy, v2, ..., Vi }. Thus, by Corollary 4.6.14,

span{vy, V2, ..., Vp} = span{xj, X2, ..., Xm}-

We conclude that {v{, V2, ..., ¥z} is a basis for the subspace of V spanned by X1, X2,
n
s X

Obtain an orthogonal basis for the subspace of R* spanned by

x; =(1,0,1,0), x,=(1,1,1,1), x3 = (—1,2,0,1).
Solution: Following the Gram-Schmidt process, we set vy = X1 = (1,0, 1, 0). Next,
we have

(X2, V1) 2 _ |
Vo) = X9 — v1=(1,1,1,1)——(1,0,1,0)—(0,1,0, )
T 2

and

(x3, V1) {x3, v2)
a ) Vi — 5 V2
[tvill [1vall

1
. (—17 2’0s 1) + 5(1701 110) - —2_(07 la 07 1)

111 1)
~“\Fata 2 2)"

The orthogonal basis so obtained is

1,0,1 . 1 —l a
[(1,0,1,0),(0, s Vs )5 —2$2127 ) .

Of course, once an orthogonal basis {vq, V2, ..., v{,,,} is obtained for a subspace
— —' to obtain an orthonormal

[vill

basis {uy, uz, ..., Uy }. For instance, an orthonormal basis for the subspace of R* in the
preceding example is

(Crodyo)-( o) (34D

Determine an orthogonal basis for the subspace of C 0[—1, 1] spanned by the functions

filx) = x, ox) = x3, fi(x) = X3, using the same inner product introduced in the
previous section.

V3 =X3

of V, we can normalize this basis by setting u;

Solution: In this case, we let {g1, g2, g3} denote the orthogonal basis, and we apply
the Gram-Schmidt process. Thus, g1 (x) = x, and

g2(x) = fa(x) — %Z’Tﬁ%lgﬂx). (4.12.5)

l' Exercises for 4.12 |
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We have 1
1
(f2. 81) :/ S2(x)g1(x) dx=/ x* dx:% and
-1 |

1

||g1||2=(81,81)=/1x2dx=%.

Substituting into Equation (4.12.5) yields
g2(x) = x* = 3x = 1x(5x2 - 3).
We now compute g3(x). According to the Gram-Schmidt process,

<f3,gl)g1(x)_ (f3, 82)
llgll? llg211?

We first evaluate the required inner products:

g3(x) = f3x) —

g2(x). (4.12.6)

1 1
(f3,g1)=f1f3(x)g1(x) dx=/ xS dx =2,

-1

1 1 1
e = [ pwmwax=3 [ Sed-nax=1($-9) =

llg2ll” = /_ ll[gz(x)]2 dx = % [1, x*(5x% = 3)? dx
= & [1,@25x6 — 30x* + 9x2) dx = 5.
Substituting into Equation (4.12.6) yields
g3(x) =x° — 3x — Zx(5x2 = 3) = £ (63x° — 70x3 + 15x).
Thus, an orthogonal basis for the subspace of CO[—l, 1] spanned by f1, f2, and f3 is

{x, Le(5x2 — 3), Lx(63x* — 70x2 + 15)} . 0

Key Terms

Orthogonal vectors, Orthogonal set, Unit vector, Orthonor-

e Be able to replace an orthogonal set with an orthonor-
mal set via normalization.

mal vectors, Orthonormal set, Normalization, Orthogonal

basis, Orthonormal basis, Gram-Schmidt process, Orthog-

onal projection.

Skills

e Be able to determine whether a given set of vectors are

e Be able to readily compute the components of a vector
v in an inner product space V relative to an orthogonal
(or orthonormal) basis for V.

e Be able to compute the orthogonal projection of one
vector w along another vector v: P(w, v).

orthogonal and/or orthonormal.

e Be able to determine whether a given set of vectors
forms an orthogonal and/or orthonormal basis for an
inner product space.

e Be able to carry out the Gram-Schmidt process to re-
place abasis for V with an orthogonal (or orthonormal)
basis for V.
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True-False Review

For Questions 1-7, decide if the given statement is true or
false, and give a brief justification for your answer. If true,
you can quote a relevant definition or theorem from the text.
If false, provide an example, illustration, or brief explanation
of why the statement is false.

1. Every orthonormal basis for an inner product space V
is also an orthogonal basis for V.

2. Every linearly independent set of vectors in an inner
product space V is orthogonal.

3. With the inner product (f, g) = f(;[ f(®)g) dt, the
functions f(x) = cosx and g(x) = sinx are an or-
thogonal basis for span{cos x, sin x}.

4. The Gram-Schmidt process applied to the vectors
{X1, X2, X3} yields the same basis as the Gram-Schmidt
process applied to the vectors {x3, X2, X1}.

5. In expressing the vector v as a linear combination of
the orthogonal basis {v{, v2, ..., v, } foraninner prod-
uct space V, the coefficient of v; is

(v, V)
|1vill?

Ci

6. If u and v are orthogonal vectors and w is any vector,
then
PP(w,v),u) =0.

7. If wy, wo, and v are vectors in an inner product space
V, then

P(w; + w2, v) = P(wy, v) + P(wa, v).

Problems

For Problems 1—4, determine whether the given set of vec-
tors is an orthogonal set in R". For those that are, determine
a corresponding orthonormal set of vectors.

1. {(2,-1,1),(1,1,-1,(©,1, H}L

2. {(la 31 _1! 1)’ (_11 17 17 _1)7 (1’07 27 1)}

For Problems 67, show that the given set of vectors is an
orthogonal set in C", and hence obtain an orthonormal set of
vectors in C" in each case.

6. (1 —i,3+2i), 2+3i,1—D)
7. (0 =i, 144,i),0,i,1 —i), (=3 +3i,2+2i,2i)}.

8. Considerthe vectorsv = (1—1i, 1+2i), w = (241, 2)
in C2. Determine the complex number z such that
{v, w} is an orthogonal set of vectors, and hence obtain
an orthonormal set of vectors in C2.

For Problems 9-10, show that the given functions in
C 0[—1, 1] are orthogonal, and use them to construct an or-
thonormal set of functions in C9[—1, 1].

9. filx) =1, folx) =sinmx, f3(x) = cosmwx.

10. fi(x) = 1, o(x) = x, f3(x) = 3(3x* — 1). These
are the Legendre polynomials that arise as solutions
of the Legendre differential equation

(1 =x%)y" = 2xy' +n(n+ 1)y =0,
when n = 0, 1, 2, respectively.

For Problems 11-12, show that the given functions are or-
thonormal on [—1, 1].

11. fi(x) = sinwx, fo(x) = sin2nwx, f3(x) = sin37x.
[Hint: The trigonometric identity

sinasinb = %[cos(a + b) — cos(a — b)]

will be useful.]

12. filx) =
cos3mx.

cosmx, fo(x) = cos2nx, f3(x) =

13. Let

Use the inner product

(A, B) = ai1b11 + ai2bi2 + az1ba1 + a2bm

3. {(17 27 _1, 0)1 (17 05 17 2)’ (_17 17 la O)a (17 _17 _17 0)}

4. {(1’ 2a —17 07 3)7 (17 17 Oa 27 _1)1 (4’a 2’ _4, _57 _4)}

5. Letv, = (1,2,3),v2 = (1,1, —1). Determine all
nonzero vectors w such that {v(, v», w} is an orthogo-
nal set. Hence obtain an orthonormal set of vectors in
R3.

to find all matrices

ab
GO [c d:|
such that {A1, Az, A3, A4} is an orthogonal set of ma-
trices in M>(R).

v

4.12

For Problems 14-19, use the Gram-Schmidt process to deter-
mine an orthonormal basis for the subspace of R* spanned
by the given set of vectors.

14. {(1,-1,-1), (2,1, -D}.

15. {(2,1,-2), (1,3, -D1)}.

16. {(—1,1,1,1),(1,2,1,2)}.

17. {(1,0,-1,0), (1,1, -1,0), (-1, 1,0, 1)}
18. ((1,2,0,1),(2,1,1,0),(1,0, 2, D)}.

19. ((1,1,-1,0),(-1,0,1, 1), (2,-1,2, 1)}.

20. If
3 14
A=]1-21
1 52

determine an orthogonal basis for rowspace(A).

For Problems 21-22, determine an orthonormal basis for the
subspace of C3 spanned by the given set of vectors. Make
sure that you use the appropriate inner product in C3.

21. {(1-4,0,,(1,14i,0)}.
22. {(1+4,i,2-0),A+2i,1—14,i)).

For Problems 23-25, determine an orthogonal basis for the
subspace of C%[a, b] spanned by the given vectors, for the
given interval [a, b].

23. i) =1, p(x) =x, falx) =x%,a=0,b=1.
24, filx) =1, falx) =x2, falx) = x4,a =-1,b=1.

fx) = filx) =
b=m/2.

25. fix) = 1,
a=-m/2,

sin x, cos x,

On M;(R) define the inner product (A, B) by
(A, B) = 5a11bi1 + 2a12b12 + 3a21b21 + S5a2202

for all matrices A = [a;;] and B = [b;;]. For Problems 26—
27, use this inner product in the Gram-Schmidt procedure
to determine an orthogonal basis for the subspace of M>(R)
spanned by the given matrices.

26. A1=|i; _}],A2=|:i _?:I

101 |01 |11
27. Al—l:lO:I,Az—[lliI,Ag;—[lo]

Also identify the subspace of M,(R) spanned by
{A1, Az, A3}

Orthogonal Sets of Vectors and the Gram-Schmidt Process
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On P,, define the inner product (p;, p2) by
(p1, p2) = apbo + aib1 + - - - + anby
for all polynomials
p1(x) =ap+ax + -+ apx",
pa(x) = bg+ bix + -+ bpx".

For Problems 28-29, use this inner product to determine an
orthogonal basis for the subspace of P, spanned by the given
polynomials.

28. pi(x) =1—2x +2x% pr(x) =2 — x — x2.
29. pi(x) = 14x%, pa(x) = 2—x+x%, p3(x) = 242 —x.

30. Let {uy, up, v} be linearly independent vectors in an
inner product space V, and suppose that u; and u are
orthogonal. Define the vector uz in V by

u3z = v+ Aug + pu,

where A, u are scalars. Derive the values of A and u
such that {uj, up, u3} is an orthogonal basis for the
subspace of V spanned by {uj, uy, v}.

31. Prove that if {v], v, ..., v} is an orthogonal set of

vectors in an inner product space V andifu; = Wv;
Vi

for each i, then {uy, uy, ..., ug} form an orthonormal

set of vectors.
32. Prove Lemma 4.12.12.

Let V be an inner product space, and let W be a subspace of
V. Set

WJ'={ve V:{v,w)=0forallw e W}.

The set W+ is called the orthogonal complement of W
in V. Problems 33-38 explore this concept in some detail.
Deeper applications can be found in Project 1 at the end of
this chapter.

33. Prove that W+ is a subspace of V.

34, Let V =R3 and let
W =span{(1, 1, —1)}.
Find W+
35. Let V = R* and let
W =span{(0, 1, —1, 3), (1,0, 0, 3)}.

Find W+,
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36.

37.

38.

39.

CHAPTER 4 Vector Spaces

Let V = M3(R) and let W be the subspace of 2 x 2
symmetric matrices. Compute wt.

Prove that W N W1 = 0. (That is, W and W+ have
no nonzero elements in common. )

Prove that if Wy is a subset of W, then (W)t is a
subset of (W))+.

The subject of Fourier series is concerned with the rep-
resentation of a 2 -periodic function f as the follow-
ing infinite linear combination of the set of functions
{1, sinnx, cosnx}52, :

1 00 .
= 5ap + 2 (ay cosnx + by sinnx).
DT i 4.12.7)

In this problem, we investigate the possibility of per-
forming such a representation.

(a) Use appropriate trigonometric identities, or some
form of technology, to verify that the set of func-
tions

{1, sinnx, cosnx}oe;
is orthogonal on the interval [—, 7].

(b) By multiplying (4.12.7) by cos mx and integrat-

ing over the interval [—m, 7], show that

1 T
ag = — fx)dx
T J—x

and =

ay = l f(x)cosmx dx.
—7T
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[Hint: You may assume that interchange of the
infinite summation with the integral is permissi-
ble.]

(¢) Use a similar procedure to show that

1 T
by = — f(x)sinmx dx.
=7

It can be shown that if f is in Cl(—m, n), then
Equation (4.12.7) holds for each x € (-—?T, T).
The series appearing on the right-hand side of
(4.12.7) is called the Fourier series of f, and t.he
constants in the summation are called the Fourier
coefficients for f.

(d) Show that the Fourier coefficients for the function
fx)y=x,—7 <x =m fx +2m) = f(x),
are

a, =0, n=0,1,2,...,

b, = ——cosnm, n=12,...,

and thereby determine the Fourier series of f.

(e) ¢ Using some form of technology, ske_tch the
approximations to f(x) = x on the interval
(—m, w) obtained by considering the first three
terms, first five terms, and first ten terms in the
Fourier series for f. What do you conclude?

In this chapter we have derived some basic results in linear algebra regarding vec.tor
spaces. These results form the framework for much of linear mathematics. Following

are listed some of the chapter highlights.

The Definition of a Vector Space

A vector space consists of four different components:

1. A set of vectors V.

2. A set of scalars F (either the set of real numbers R, or the set of complex numbers

©).

3. A rule, +, for adding vectors in V.

4. A rule, -, for multiplying vectors in V by scalars in F.

Then (V, +, -) is a vector space over F if and only if axioms AI—A.dO of Definition 4.2.1
are satisfied. If F is the set of all real numbers, then (V, +, ) is c:alled a real vector
space, whereas if F is the set of all complex numbers, then (V, +, -) is called a complex
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vector space. Since it is usually quite clear what the addition and scalar multiplication
operations are, we usually specify a vector space by giving only the set of vectors V.
The major vector spaces we have dealt with are the following:

R" the (real) vector spa::e of all ordered n-tuples of real numbers.

(4 the (complex) vector space of all ordered n~-tuples of complex numbers.

M, (R) the (real) vector space of all n x n matrices with real elements.

C*(I) the vector space of all real-valued functions that are continuous and have
(at least) k continuous derivatives on /.

P, the vector space of all polynomials of degree < n with real coefficients.

Subspaces

Usually the vector space V that underlies a given problem is known. It is often one that
appears in the list above. However, the solution of a given problem in general involves
only a subset of vectors from this vector space. The question that then arises is whether
this subset of vectors is itself a vector space under the same operations of addition and
scalar multiplication as in V. In order to answer this question, Theorem 4.3.2 tells ug
that a nonempty subset of a vector space V is a subspace of V if and only if the subset
is closed under addition and closed under scalar multiplication.

Spanning Sets

A set of vectors {vy, vo, ..., Vi } in a vector space V is said to span V if every vector in
V can be written as a linear combination of V1, V2, ..., Vy—that s, if forevery v € V,
there exist scalars ¢1, ¢, .. ., ¢ such that

v=avitoavy+ -+ cpv.

Given a set of vectors {vq, vo, ..., Vi) in a vector space V, we can form the set of ail
vectors that can be written as a linear combination of Vi, V2, ..., V. This collection of

vectors is a subspace of V called the subspace spanned by {v1, vy, ..., v}, and denoted
span{v(, v2, ..., v¢}. Thus,

span{vy, vo, ..., ={veV:v= C1v1 + v + -+ - 4 Vi)

Linear Dependence and Linear Independence

Let {vi,v2, ..., v;} be a set of vectors in a vector space V, and consider the vector
equation
CIVli+ v+ -4 vy = 0. 4.13.1)
Clearly this equation will hold if ¢; = ¢y = ... = ¢, = 0. The question of interest is
whether there are nonzero values of some or all of the scalars ¢y, ¢, ..., ¢ such that
(4.13.1) holds. This leads to the following two ideas:
Linear dependence:  There exist scalars C1,¢2, ..., Ck, not all zero, such that
(4.13.1) holds.
Linear independence: The only values of the scalars ¢y, ¢y, ..., ¢y such that (4.13.1)
holdsareci = ¢y = ... = ¢, = 0.

To determine whether a set of vectors is linearly dependent or linearly independent we
usually have to use (4.13.1). However, if the vectors are from R", then we can use
Corollary 4.5.15, whereas for vectors in C*~! (I) the Wronskian can be useful.
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34. Let A be an m x n matrix, let v € colspace(A) and let 4. A= [ =5 0 :| 54. Let 1,11, ..., t, be real numbers. For p and ¢ in P, 55. Find the distance from the point (2, 3, 4) to the line in
w € nullspace(AT). Prove that v and w are orthogonal. —6 —12 define R3 passing through (0, 0, 0) and (6, —1, —4).
35. Let W denote the set of all 3 x 3 skew-symmetric -1 62 0 p-q = pto)q(t) + ptg@t) + -+ pl)g(ty).
matrices. 42. A= 3315 (a) Prove that p - g defines a valid inner product on 56. Let V be an inner product space with basis
(8) Show that W is a subspace of M3(R). L 721715 P,. {vi,va2,...,v,}. If x and y are vectors in V such that
(b) Find a basis and the dimension of W -4 0 3 () Lettg = =3,/ = =1, = 1, and 13 = 3. X-Vi =y vpeforeachi =1,2,...,n, prove that
. din part (b 010 13 Let po(t) = 1, p1(t) = t,and pp() = (2. Find =¥
(© §Xt_ens th;{ ba]lzls you constructed in part (p) toa 43 4 — 6 5 2 a polynomial ¢ that is orthogonal to pg and pj,
asis for M3(R). 5 510 such that {pg, p1, g} is an orthogonal basis for =~ 57. State as many conditions as you can on an n X # matrix
36. Let W denote the set of all 3 x 3 matrices whose rows - span{po, p1, p2}. A that are equivalent to its invertibility.
and columns add up to zero. [ 35 5 2 0
(a) Show that W is a subspace of Ms(R). aa=| 1922 ] Frojectls Srthogenal ComplSment
(b) Find a basis and the dimension of W. 20 —4.—2 —2 Let V be an inner product space and let W be a subspace of V.
¢) Extend the basis you constructed in part (b) to a ) o
© basis for M3 (R). : part (b) For Problems 45-46, find an orthonormal basis for the row Part 1 Definition Let
space, column space, and null space of the given matrix A.
37. Let (V, +v, v) and (W, +w, -w) be vector spaces ={veV: (v,w)=0forallwe W}
and define [12 Il 5
aE 21 6 Show that W+ is a subspace of V and that W and W share only the zero vector:
VOW={(v,w):veVandwe W} 4 =1012 WEnw ={0}.
| 102
Prove that Part 2 Examples
. : = 1 35
(a) Xpé‘iat};’mllss a vector space, under componentwise i (a) Let V = My(R) with inner product
(b) Viatheidentificationv + (v, 0), V is a subspace (6 = (1) ? ; ap ap b11 b1z
of V @ W, and likewise for W. 1 58 ( a ax |’ | ba by ) = anbn + anbiz + aznbu +anbn.

(¢) If dim[V] = n and dim[W] = m, then dim[V &

Find the orthogonal complement of the set W of 2 x 2 symmetric matrices.

W] = m + n. [Hint: Write a basis for V @ W in For Problems 47-50, find an orthogonal basis for the span

terms of bases for V and W.] of the set S, where S is given in (b) Let A be an m x n matrix. Show that

38. Show that a basis for P3 need not contain a polynomial 47. Problem 25.
of each degree 0, 1, 2, 3. (rowspace(A))L = nullspace(A)

48. Problem 26.

39. Prove thatif A is a matrix whose nullspace and column and
space are the same, then A must have an even number 49, Problem 29, using p - q = fol p()q(t) dt.

of columns.

(colspace(A))L = nullspace(AT).

50. Problem 32, using the inner product defined in Prob-

40. Let i .
lem 4 of Section 4.11. Use this to find the orthogonal complement of the row space and column space of
by For Problems 51-54, determine the angle between the given the matrices below:
ba g
B | and C=[cier... cn]. vectors u and v using the standard inner product on R". @ A= [3 1 -1 ]
: =l60-4]
by 51. u=(2,3)andv= (4, —1).
-1 06 2
Prove that if all entries by,by,...,b, and 52 u=(-2,—1,2,4)andv =(-3,5,1, ). (i) A= 3~-10 4
¢i,¢Ca2,...,Cq are nonzero, then the n x n matrix ) 1 11-1
A = BC has nullity n — 1. 53. Repeat Problems 51-52 for the inner product on R"
given by (c) Find the orthogonal complement of

For Problems 41-44, find a basis and the dimension for the

row space, column space, and null space of the given matrix (u, v) = 2u vy + ugvy + usvz + - - + Upvy. (i) the line in R? containing the points (0, 0, 0) and (2, —1, 3).

A. (ii) the plane 2x 4+ 3y — 4z = 0in R3.
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Part 3 Some Theoretical Results Let W be a subspace of a finite-dimensional inner
product space V.

(a) Show that every vector in V can be written uniquely in the form w 4 WJ‘, where
w e Wand wt € wi, [Hint: By Gram-Schmidt, v can be projected onto the
subspace W as, say, Projy, (v), and so v = projy (v) + w, where wl € W-. For
the uniqueness, use the fact that W N W+ = {0}.]

(b) Use part (a) to show that
dim[V] = dim{W] + dim[W].

(¢) Show that
WHt =w.

Project ll: Line-Fitting Data Points

Suppose data points (x1, y1), (x7, ¥2), ..., (xn, ¥u) in the xy-plane have been collected,
Unless these data points are collinear, there will be no line that contains all of them. We
wish to find a line, commonly known as a least-squares line, that approximates the data
points as closely as possible.

How do we go about finding such a line? The approach we take!? is to write the line
as y = mx + b, where m and b are unknown constants.

Part 1 Derivation of the Least-Squares Line

(a) By substituting the data points (x;, i) for x and y in the equation y = mx + b,
show that the matrix equation Ax = y is obtained, where

X1 1 }

X2 Vo
A= 3 X = l:’Z] and y=

Xp 1 Y

Unless the data points are collinear, the system Ax = y obtained in part (a) has no
solution for x. In other words, the vector y does not lie in the column space of A.
The goal then becomes 1o find x such that the distance |ly — Axp|| is as small as
possible. This will happen precisely when Y — Axp is perpendicular to the column
space of A. In other words, for all x € B2, we must have

(Ax) - (y — Axp) = 0.

(b) Using the fact that the dot product of vectors u and v can be written as a matrix
multiplication,

show that
(Ax) - (y ~ Axp) = x - (ATy — AT Axy).
(¢) Conclude that
ATy = ATAX().

Provided that A has linearly independent columns, the matrix A7 A is invertible
(see Problem 34, in Section 4.13).

12We can also obtain the least-squares line by using optimization techniques from multivariable calculus,
but the goal here is to illustrate the use of linear systems and projections.

Y
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(d) Show that the least-squares solution is
xo = (AT Ay~ ATy
and therefore,

Axp = A(ATA)" ATy

is the point in the column space of A that is closest to y. Therefore, it is the
projection of y onto the column space of A, and we write

Axg = A(ATA)"'ATy = Py,
where
P =AATA)TIAT (4.13.2)
is called a projection matrix. If A is m x n, what are the dimensions of P?

(e) Referring to the projection matrix P in (4.13.2), show that PA = A and P2 = P
Geometrically, why are these facts to be expected? Also show that P is a symmetric
matrix.

Part 2 Some Applications In parts (a)—(d) below, find the equation of the least-squares
line to the given data points.

(@) 0,-2),(1,-1),(2,1,(3,2), 42).
(b) (=1,5),(1, 1), (2, D), 3, -3).
(© (=4, -1), (-3, 1),(-2,3),(0,7).

(d) (_37 1)9 (—27 0)7 (_17 1)’ (Oa _1)7 (27 _1)
In parts (e)~(f), by using the ideas in this project, find the distance from the point
P to the given plane.

(e) P(0,0,0);2x —y+3z=6.
® P(—1,3,5);—x+3y+3z=28.

Part 3 A Further Generalization Instead of fitting data points to a least-squares line,
one could also attempt to do a parabolic approximation of the form ax? + bx + c. By
following the outline in Part 1 above, try to determine a procedure for finding the best
parabolic approximation to a set of data points. Then try out your procedure on the data
points given in Part 2, (a)—(d).




774 APPENDIXE Answers to Odd-Numbered Exercises

| 1

Problems 15. Orthonormal basis: {5(2, 1, -2), 3—\/—5(—],4, 1)].

1. nullspace(A) = {(x, ¥, 2, w) x —6z—w =0} nullity(A) = 3; >l

rank(A) = 1. 17. Orthonormal basis: {—=(1,0, —1,0), (0, 1,0,0),

3. nulispace(A) = {0}; nullity(A) = 0; rank(A) = 3, | V2

5. 'l —(=1,0,—1,2)}.

7.1 V6

9. x = ex) +xp. where x| = (34, —11, 1) and x = (=5,3,0). 19. Orthonormal basis: |

=x, =2, — ’(l,1,—1,0‘),—/(*1,2,1,3),—f(B,—l,Z, l)l,
1. x=xp = (2, 3, . [ﬁ NG NE
13. No. l ‘
21. Orthonormal basis: {7(1 —i,0,0), —=— (1,343 1 - i)}.
Section 4.10 V3 V21
. I 1 ‘

‘True-False Review 23. Orthogonal basis: {]‘ 5(2)( — 1), 6(6.x — 6x + 1)‘.

1. True Bl [ . o] 9

3. False 25. Orthogonal basis: { 1, sinx, ;(n’ cosx —2)t.

5. True

) 1o I 0 00 ’ ¥

7. False 27. Orthogonal basis: H | 0] , [0 0] , [0 | ]].the subspace of all

9. False symmetric matrices in Mz ().
S(—)CtiOI"I 4 1 29. Orthogonal basis: {l +x21—x— 243 -3 -5+ 3x? 4 3L,

| ons M N
True-False Review 35. Wb =span (0, 1,1,0), (=3, 3,0, D}

. False ———n
IR Section 4.13
3. True
5. False
7. False Additional Problems
3. No.
Problems
5. No.
1. A =0.95rad.
3. (vow) = 19+ L, |Ivl] = V35, [Ivll = V22 7. No.
7. (A, BY = 13, 1Al = VT3, 118l = V7. 9. Yes.
1. (a) 9. 11. No.
(b) 0.
13. No.
Section 4.12 19. No.
True-False Review 2ilatlilos
1. True 23. Yes.
3. True 25. (b) only.
5. True 27. (b)only.
7. True
29. (a) and (b).
Problems 31. (b) only.
[ L ! 35 (b) One possible basis:
1. Orlh()nommlscl:{——(2,7],1)‘4(I,l,~1)‘/((),|11)], . pos: asis:
‘ V6 V3 V2 0107 T00-17 00 0
3. Not orthogonal. 1 l l L ool.loo of,lo0-1
5. Orthonormal set: ‘— —(1,2,3), —=(1,1,=1), — (5, -4, I‘)l. 0 00 10 0 01 0
J14 V3 NZY) ) ) ) -
7. Orthonormal set: (¢) Add Eyy, Eoo, E33, Ep2, Ey3, and Ep3.
] | , . N e
{7_(1 — i, 14,0, 7((), i1 =10, :/]:(73 + 34,2 424, 2{)]_ 41. Basis for rowspace(A): {(—3, —6)}. Basis for colspace(A):
5 3 30 {(=3, —6)}. Basis for nullspace(A): (=2, 1)}.
9. Orthonormal set: {%7 SIN 7Y, COSTTA 1 43. Basis for rowspace(A): [(1,0,0), (0, 1,0), (0,0, 1)). Basis for

3 _| colspace(A): [(—4,0,06, -2), 0,10,5,5), 3,13,2, 10)]. The part
13. Ay =k [2 -J

about the basis for nullspace(A) should be 0.
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